

# Integrative Modeling Approach to Assessing Cardiotoxity Risk

Anna Georgieva, Ph.D.

Modeling and Simulation, Novartis





#### Problem of QT prolongation and arrhythmias

- Prolonged QT has been accepted as biomarker for sudden death!
- •It is associated with a potentially fatal ventricular arrhythmia = Torsades de Pointes (TdP)
- Major regulatory concern
- Question is:
  - Who is at risk? Risk quantification?
  - When?
  - Which drugs and at what exposures?

Identify 'signal' for arrhythmia

- IKr (HERG) block →
- Prolongation of action potential duration (APD) →
- Increase in QT interval →
- TdP

### QT prolongation, *Torsades de Pointes* and ventricular fibrillation.





# Pre-Clinical Drug Cardiac Safety Assessment: Work flow on the Experimental Side





#### CARDIAC CELL/TISSUE ASSAYS

- •Ventricular myocytes (various species, incl. human)
- Purkinje fiber (various species)
- •Papillary muscle, ventricular strips

ORGAN LEVEL ASSAYS
(Higher level data, incl. ECG)

- •Langendorff type preparations
- In vivo dog telemetry





### Complexities of information integration

- I<sub>Kr</sub>: often the only channel directly tested at early screening stage
- Drugs often affect other channels: I<sub>Ks</sub>, I<sub>Ca-L</sub>, late I<sub>Na-sus</sub>, all important in repolarization!
- I<sub>Kr</sub> "red flag signal" → Mixed effects on other channels may worsen OR improve effects on APD and QT
- NO I<sub>Kr</sub> "signal" → Doesn't imply one is necessarily "safe" at the APD or QT level!
- Spatial heterogeneity in channels, from endo- to mid- to epi-cardiac cells across ventricular wall
- Many other physiological variables >
  heart rate, disease/genetic status,
  gender, nutrition, diurnal









# Ion Currents Impacting Prolongation of Myocyte Repolarization







How do we tackle the problem of integrating information that may be pointing to different conclusions?





#### What is a modeling platform?

- Model of a biological system of interest
- Is created in a flexible manner that allows taking of new data and information
- Incorporate uncertainty of scaling:
  - across species
  - IVIV
  - inter-subject variability
- Potential to be re-usable for multiple projects
- Necessarily span multiple space and time scales
  - to include drug targets
  - to include clinically relevant points, such as biomarkers



#### Conceptual framework of modeling platform





#### Models of membrane gating

Non-Linear Channel Model - Na



$$\alpha_{m} = \frac{1}{1 + e^{(-60 - V)/5}}$$

$$m_{open} \xrightarrow{\alpha_{m}(V)} m_{closed}$$

$$h_{open} \xrightarrow{\alpha_{h}(V)} h_{closed}$$

$$j_{open} \xrightarrow{\alpha_{j}(V)} j_{closed}$$



Work of many academic researchers- from 1962 till now!



#### **Modeling of drug effects**

- I<sub>max</sub> approach taken:
  - (1-b) modifier added to specific current
    - Can actually be applied to a single gate only
  - b defined as a percent of channels blocked
    - b<sub>∞</sub> is the steady state value



$$b_{\infty} = 1/(1 + IC_{50}/[D])$$



m-gates

#### Integrating channels into a cell model





#### Cell membrane as a capacitor

$$\frac{dV}{dt} = -\frac{1}{C_m} \sum I_{curr}$$



action potential V(t)



#### Spatial modeling: one dimensional approach

- Create a model with a few cells in series
- Stimulus applied to first cell
- Measure voltage in each cell as membrane capacitance changes
  - Spatial gradient of voltage develops over time

To get transmural ECG:

Integrate spatial gradient of V, as if measured by electrodes

**Boundary** 

Condition

Electrode



#### Spatial Modeling: Results for multicellular tissue





#### 2D simulation with an accurate cellular model





Time profile at stimulus location

# M&S

#### **Effect of coupling**



From Gima & Rudy, "Ionic Current Basis of Electrocardiographic Waveforms: A Model Study," Circ Res 2002; 90:889-896.

Study case for cardiotox assessment

#### Data for 2 drug candidates

- + HERG/IKr block
  - 1.48 mM (Drug A) and 1.82 mM (Drug B)
- no Purkinje Fiber APD prolongation!
  - paced at 0.5, 1.0 Hz,
  - drug concentration: 0, .1, .3, 1.0, 3.0, 10 mM
- Evaluation of risk
- Compound prioritization
- Constraints in model:
  - No full experimental IC50 profile
  - Building a new model of Purkinje fiber
  - Characterization of variability
- Goal: provide in silico risk assessment with available data and models



→ Novel: applications of parameter estimation to *in silico* cardiac safety assessment Bottino et al, PBMB (2006) 90(1-3):414-43



#### Novel workflow in platform development





#### Reverse-engineering results

- → Significant inhibition of I<sub>Kr</sub>, I<sub>Ca-L</sub>, I<sub>Na-sus</sub> by both drugs
- → Dose-response estimates for key currents: important for AP repolarization





# M&S

#### Forward-engineering



- **Pure I<sub>Kr</sub> blockers prolong the QT interval (left panel)**
- ➤ Both drugs act to shorten the QT interval and reduce the amplitude of the T wave (at high doses there is also inversion)
- >At higher concentrations of Drug A (5-10 μM), shortening of the QT interval reverses but remains less than control



#### Drug A vs. Drug B

μΜ

- Both compounds block multiple ion currents
  - Data and model indicate significant block of I<sub>Kr</sub>, I<sub>Ca-L</sub> and I<sub>Na-sus</sub>
  - Stark contrast to "null-hypothesis" of pure I<sub>Kr</sub> block
- No dose-dependent QT prolongation or increase in TDR
- Confidence intervals for Drug A smaller vs. Drug B
  - Confidence in predictions is better for Drug A
- Experimental Confirmation ©

Fast 
$$I_{Na}$$
 Drug A:  $IC_{50} = 2.30 \ \mu M$  Late  $I_{Na}$  Drug A:  $IC_{50} = 0.23$ -0.46

Drug B:  $IC_{50} = 4.48 \mu M$  Drug B:  $IC_{50} = 0.45-0.90$ 

Model Drug A:  $IC_{50} = 0.27 \mu M$ 

Drug B:  $IC_{50} = 0.59 \mu M$ 



#### **Conclusions**

- Modeling can resolve contradiction between experimental readouts
- Results in excellent agreement with independent experiments (validation)
- Can expand model to introduce uncertainty and compare with clinical results
- Modeling provides new insight into system
- Modeling provides flexible framework
- Adapt models to reflect currently used experimental assays
- Impossible to implement such efforts without tremendous amount of insights coming from previous research efforts



#### **Contributors**

- Berengere Dumotier
- Ruben Bibas
- Michael Deutsch
- Dean Bottino
- Denis Noble
- Natalia Trayanova
- Scott Lett
- Andy Stamps
- Christian Penland
- Gabriel Helmlinger





#### **Backup Slides**



#### **Heart physiology & membrane dynamics**





#### Trans-membrane gradients of electrolyte concentrations



Membrane potential (resting potential/action potential) determined by transmembrane ion gradients



## Waves and time intervals constituting the electrocardiogram







- Mechanisms within the existing endocardial myocyte model are similar to those of canine Purkinje fiber
  - Differences can be approximated by changing 14 conductance parameters
- Drugs act via a sigmoidal dose-response relationship to inhibit 6 currents (I<sub>Kr</sub>, I<sub>Ks</sub>, I<sub>to</sub>, I<sub>Ca-L</sub>, I<sub>Na-Ca</sub>, I<sub>Na-sus</sub>)
  - These currents suffice to predict the action of a drug on ventricular myocytes and Purkinje fibers
- Dose-response parameters from HERG assay and Purkinje fiber parameter estimates can be used in ventricular myocyte models
- The chosen error functions are a good measure of the quality of fit of the model to action potential data



#### Pure I<sub>Kr</sub> blocker" hypothesis (Drugs A & B) → not good







#### **Drug A IC50 profile fits**



#### Forward-engineering (I)





In contrast to pure  $I_{Kr}$  blockers, which prolong the action potential (severely so in M cells), Drug A & Drug B either do not affect or even shorten action potentials in isolated cells

# M&S

#### Forward-engineering (III)



> The difference in APD between isolated epicardial and M cells is, in this example, consistent with the TDR in the 1-D cable